30 research outputs found

    Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV) genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    Get PDF
    BACKGROUND: An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus). The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV) were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. RESULTS: The PePV genome (7304 basepairs) differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs) papillomavirus (FPV) reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. CONCLUSIONS: The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution

    A single bat species in Cameroon harbors multiple highly divergent papillomaviruses in stool identified by metagenomics analysis

    Get PDF
    AbstractA number of PVs have been described in bats but to the best of our knowledge not from feces. Using a previously described NetoVIR protocol, Eidolon helvum pooled fecal samples (Eh) were treated and sequenced by Illumina next generation sequencing technology. Two complete genomes of novel PVs (EhPV2 and EhPV3) and 3 partial sequences (BATPV61, BATPV890a and BATPV890b) were obtained and analysis showed that the EhPV2 and EhPV3 major capsid proteins cluster with and share 60–64% nucleotide identity with that of Rousettus aegyptiacus PV1, thus representing new species of PVs within the genus Psipapillomavirus. The other PVs clustered in different branches of our phylogenetic tree and may potentially represent novel species and/or genera. This points to the vast diversity of PVs in bats and in Eidolon helvum bats in particular, therefore adding support to the current concept that PV evolution is more complex than merely strict PV-host co-evolution

    Ancient papillomavirus-host co-speciation in Felidae

    Get PDF
    The evolutionary rate of feline papillomaviruses is inferred from the phylogenetic analysis of their hosts, providing evidence for long-term virus-host co-speciatio

    Animal papillomaviruses

    Get PDF
    AbstractWe provide an overview of the host range, taxonomic classification and genomic diversity of animal papillomaviruses. The complete genomes of 112 non-human papillomavirus types, recovered from 54 different host species, are currently available in GenBank. The recent characterizations of reptilian papillomaviruses extend the host range of the Papillomaviridae to include all amniotes. Although the genetically diverse papillomaviruses have a highly conserved genomic lay-out, deviations from this prototypic genome organization are observed in several animal papillomaviruses, and only the core ORFs E1, E2, L2 and L1 are present in all characterized papillomavirus genomes. The discovery of papilloma–polyoma hybrids BPCV1 and BPCV2, containing a papillomaviral late region but an early region encoding typical polyomaviral nonstructural proteins, and the detection of recombination breakpoints between the early and late coding regions of cetacean papillomaviruses, could indicate that early and late gene cassettes of papillomaviruses are relatively independent entities that can be interchanged by recombination

    Virus hunting: Discovery of new episomal circular viruses by rolling circle techniques

    No full text
    Many methods for the discovery of novel viruses are based on amplification of the virus using consensus or degenerate PCR primers. A downside of this approach is that it requires prior knowledge of the viral nucleotide sequence to be applicable. Presented in this unit is a method for the sequence-independent amplification of circular viral genomes that is based on the rolling-circle mechanism used by certain viruses in their natural replication cycle. The amplification of the virus of interest is coupled to the isolation of the viral genome by gel extraction following a restriction digestion. Once isolated, the sequence of the viral genome can be determined by nanopore sequencing, a rapid and inexpensive next-generation sequencing technology that generates long reads in real time. The method described in this unit was originally developed for the discovery of papillomaviruses, but can be used for the identification of all types of circular DNA viruses. © 2017 by John Wiley & Sons, Inc.status: publishe

    A Sequence-Independent Strategy for Detection and Cloning of Circular DNA Virus Genomes by Using Multiply Primed Rolling-Circle Amplification

    No full text
    The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with φ29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 × 10(4)-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information

    Papillomavirus Infection in Humans and Dromedary Camels in Eastern Sudan

    No full text
    Cases of wart-like lesions in humans and dromedary camels occurred in eastern Sudan in 2015 were described. Involvement of papillomavirus (PV) in causing these cases was affirmed by PCR and immunoperoxidase test. Mostly, the lesions were observed on the skin of the chest and forearms in addition to lips and mandible. Sequence analysis revealed Camelus dromedarius PV types 1 and 2 genotypes as the causative genotypes. We also observed cases of wart-like lesions on hands and legs of two herders attending the infected camel herd. Partial genome sequencing revealed human PV type 2 in one of the two human samples providing no indications for interspecies transmission of camel PVs, yet provides, for the first time evidence of active circulation of this virus in eastern Sudan.status: publishe

    Investigation on papillomavirus infection in dromedary camels in Al-Ahsa, Saudi Arabia

    Get PDF
    We investigated two outbreaks of papillomatosis between 2013 and 2015 in Al Ahsa region of eastern Saudi Arabia involving fourteen dromedary camels. The disease affected both young and adult animals and occurred in coincidence with demodectic mange infestation. Diagnosis was made based on gross and histopathological characteristics of the wart lesion and was confirmed by PCR. Rolling circle amplification followed by degenerate primer PCR and sequencing of the amplicons revealed the presence of both Camelus dromedarius papillomavirus types 1 and 2, previously identified in infected dromedaries in Sudan.Keywords: Al Ahsa, Dromedary camels, Infection, Papillomavirus, Saudi Arabia

    Towards a unified classification for human respiratory syncytial virus genotypes.

    No full text
    Since the first human respiratory syncytial virus (HRSV) genotype classification in 1998, inconsistent conclusions have been drawn regarding the criteria that define HRSV genotypes and their nomenclature, challenging data comparisons between research groups. In this study, we aim to unify the field of HRSV genotype classification by reviewing the different methods that have been used in the past to define HRSV genotypes and by proposing a new classification procedure, based on well-established phylogenetic methods. All available complete HRSV genomes (>12,000 bp) were downloaded from GenBank and divided into the two subgroups: HRSV-A and HRSV-B. From whole-genome alignments, the regions that correspond to the open reading frame of the glycoprotein G and the second hypervariable region (HVR2) of the ectodomain were extracted. In the resulting partial alignments, the phylogenetic signal within each fragment was assessed. Maximum likelihood phylogenetic trees were reconstructed using the complete genome alignments. Patristic distances were calculated between all pairs of tips in the phylogenetic tree and summarized as a density plot in order to determine a cutoff value at the lowest point following the major distance peak. Our data show that neither the HVR2 fragment nor the G gene contains sufficient phylogenetic signal to perform reliable phylogenetic reconstruction. Therefore, whole-genome alignments were used to determine HRSV genotypes. We define a genotype using the following criteria: a bootstrap support of ≥ 70 per cent for the respective clade and a maximum patristic distance between all members of the clade of ≤0.018 substitutions per site for HRSV-A or ≤0.026 substitutions per site for HRSV-B. By applying this definition, we distinguish twenty-three genotypes within subtype HRSV-A and six genotypes within subtype HRSV-B. Applying the genotype criteria on subsampled data sets confirmed the robustness of the method.status: Published onlin
    corecore